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We present a specific use of domain decomposition and decomposition in function
space combined with asymptotic analytical qualitative results to obtain, on paral-
lel computers, efficient and accurate solvers [3] for rapidly varying quasi-planar
unsteady combustion fronts in liquids. In particular, we give anew parallel direct
solverof the unsteady incompressible Navier–Stokes equations in the stream func-
tion formulation. This solver is based on an embedding technique that allows us to
generalize our previous results from the case with periodic boundary conditions [6, 7]
to thenonperiodiccase with wall boundary conditions in a direction perpendicular to
front propagation. The solution is decomposed into a particular solution, suitable for a
Fourier method, and the general homogeneous solution, calculated from an analytic
solution with high precision, to satisfy the boundary conditions. The algorithm is im-
plemented for parallel computers and results in a very effective code. Results on the
effect of the convection onto the front propagation are provided.c© 1998 Academic Press
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1. INTRODUCTION

Our applications to frontal polymerization (FP) are characterized by rapidly varying
fronts and complex nonlinear dynamics. The multiple scale phenomena under conside-
ration lead to very intense computations and can be analyzed formally by asymptotic meth-
ods [9, 8]. In this paper, we consider the propagation of reaction fronts in liquids that

1 This work was backed by R´egion Rhône Alpes.
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models FP; FP is currently being investigated as a tool to design new materials that cannot
be produced by classical processes [16]. The interaction between convective instabilities
similar to Rayleigh B´enard’s instability and thermal instabilities, well-known in solid phase
combustion [15, 5] plays a key role in the modelization of FP [18, 17].

The aim of this paper is to give an algorithm that works for periodic, as well as for
nonperiodic boundary conditions without changing the data structure, allowing us to extend
our previous results [6] and maintaining the high accuracy required to produce reliable
numerical simulations of FP. Instabilities in FP are very difficult computations to work
out properly and extremely time consuming; we wholly use the very specific features of
the solution that we are searching for and that corresponds to some experiments [16] to
design our solver methodology. In addition, the basic idea of using local Fourier basis to go
from periodic to nonperiodic boundary conditions with the same data structure and a good
parallel efficiency might be of real interest for a more general situation [12–14, 4]. This
paper gives a nontrivial example of the application of such methodology.

The outline of the present paper is as follows: First, we introduce the governing equations
of our model of a 2D frontal polymerisation process in a liquid phase. Then in Section 2,
we recall the special use of domain decomposition and decomposition in a function space,
combined with asymptotic analytical qualitative results, to obtain, on parallel computers,
efficient and accurate solvers [3] for rapidly varying quasi-planar unsteady combustion
fronts in liquids with periodic boundary condition in thex direction. In Section 3 we
give a new parallel direct solverof the unsteady incompressible Navier–Stokes, based
on an embedding technique that allows us to generalize our previous results [6] from the
periodic case to thenonperiodic case. The purpose of Section 4 is to provide an example
of a numerical simulation made with our method and to illustrate the effectiveness of our
approach. In this paper we have chosen to consider the effect of convection on the thermal
instability of our combustion model. Conclusions are then given in Section 5.

1.1. Governing Equations of a FP Process in a Liquid Phase

The first step in modelization is to couple the reaction–diffusion system, well-known
in solid combustion [15], with the Navier–Stokes equations written in the Boussinesq ap-
proximation. For the numerical simulation, we use the stream function–vorticity(9 − ω)
formulation of the N–S and we consider first-order one-step chemical reactions.C is the
concentration of the reactant andT is the temperature. We look for special solutions of the
dimensionless system (1)–(4)

∂T/∂t + (∂9/∂z)(∂T/∂x)− (∂9/∂x)(∂T/∂z) = 1T +W (1)

∂C/∂t + (∂9/∂z)(∂C/∂x)− (∂9/∂x)(∂C/∂z) = ε1C −W (2)

∂ω/∂t + (∂9/∂z)(∂ω/∂x)− (∂9/∂x)(∂ω/∂z) = P1ω − RP
∂T

∂x
(3)

19 = −ω (4)

that are traveling combustion fronts.W represents the source term given by the Arrhenius
law,

W = ZC exp

(
ZT

1+ δ(1− T)

)
(5)
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with δ=q/Tb, ε a small parameter which is a scaled measure of the mass diffusion,P the
Prandlt number,R the Rayleigh number, andZ=q E/R0T2

b the Zeldovich number, withR0

the gas constant,E the activation energy, andq the adiabatic heat release, whereTb= Ti +q
is the adiabatic temperature andTi is the temperature of the cold reactant.

The boundary conditions satisfied are

T→ 0, C→ 1, ω→ 0, 9→ 0, asz→−∞, (6)

T→ 1, C→ 0, ω→ 0, 9→ 0, asz→+∞. (7)

However, we solve (1)–(4) on the finite domainÄ= [−L , L]× [0, 2π ] with the boundary
conditions

T(x,−L) = 0, T(x, L) = 1 for x ∈ (0, 2π), (8)

C(x,−L) = 1, C(x, L) = 0 for x ∈ (0, 2π), (9)

ω(x,∓L) = 0, 9(x,∓L) = 0 for x ∈ (0, 2π), (10)

and we take in the numerical simulationL large enough such that it has no influence on the
dynamics of the combustion front.

Let us note that for this system (1)–(4) the derivation of the corresponding interface model
[8] shows that in the limit of infinite activation energy the concentration exhibits a jump at
the front, the temperature is continuous but it has a jump in its first-order derivative normal
to the front, and the velocity is continuous, up to the third-order derivative normal to the
front. Moreover, the viscosity of the N–S model is very low, so the stream function and con-
sequently the vorticity do not show a TL near the front. Therefore the main difficulty in the
computation is driven by the combustion process itself and not the computation of the flow.

The system (1)–(4) has one-dimensional traveling wave solutions that are stable or un-
stable, depending on the value of the bifurcation (and control) parametersZ, R, P, ε. We
use these traveling wave solutions as initial conditions for the numerical simulation and
introduce local perturbations to test their stability and/or to obtain new pattern formations
of the solution. We maintain the time-dependent combustion front that propagates in the
negativez direction during the numerical simulation roughly in the vicinity of the central
line x= 0 by shifting in space the unknown functions. This shift is done by first computing
the Chebyshev coefficients of the unknown functions, then shifting the computational grid
in thez-direction: the unknown functions are interpolated at each point of the new compu-
tational grid, with spectral accuracy, except for new points of the physical domain which
correspond to extrapolation. In addition, we satisfy (8)–(10) for all time. In the following
paragraphs, we will consider two situations depending on the types of boundary conditions
for the unknowns along the boundaryx= 0 andx= 2π of the domain. We recall that the
solution exhibits multiple scale phenomena in space and in time: the combustion front is
rapidly varying and the nonlinear source termW is close to a very sharp peak that drives
the dynamic of the combustion reaction; the combustion front may pulse in time and its
speed exhibits relaxation oscillations. The solution and its possible bifurcations are then
intractable by low order schemes.

2. PERIODIC BOUNDARY CONDITIONS

Let us first briefly recall our methodology to solve the model problem [9, 8] with the
periodic boundary conditions in thex variable. We use Chebyshev piecewise approximation
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[10, 11] of the solution in the direction of propagation of the chemical wave (z variable)
and Fourier expansion and/or high order finite differences in the periodic direction. Let us
briefly describe the salient features of our method. A detailed description of the method can
be found in [6].

We first consider the example of the scalar 1D equation:

∂u

∂t
= ∂2u

∂z2
+ Fε(u), u(−1) = 0, u(1) = 1, (11)

with some appropriate initial condition. We suppose thatu exhibits atransition layer(TL)
of thicknessε located atz= S(t) ∈ (−1, 1). It was shown in [1, 3, 10] that an efficient and
accurate way to solve a TL is to use two subdomains with an interface located at the front
and a mapping that concentrates the collocation points of the pseudo-spectral approximation
at the end of the subdomains in the layer. The solutionu of (11) restricted to one of these
subdomains exhibits a boundary layer (BL) in the neighborhood ofS(t).

Let us consider that we havend= 2 subdomains withNz collocation points per subdomain
and a semi-implicit Euler scheme for the integration in time:

un+1− un

1t
= D2un+1+ Fε(u

n), x ∈ Äi , i = 1, 2, (12)

where1t is a constant time step, andD is the operator of differentiation. We take the
second-order derivative term implicitly because it gives the main constraint on the time
step. Since the nonlinear term is taken explicitly,un+1 can be found as a solution to the
linear system

D̃un+1 = un +1t Fε(u
n), with D̃ =

 A1 β̂

α̃t γ β̃
t

α̂ A2

 , (13)

whereγ is a real number,A1 and A2 are (Nz− 1)× (Nz− 1) matrices, ˆα, β̂, α̃t , β̃
t

are
vectors with(Nz− 1) components. The row(α̃t , γ, β̃

t
) appears from the condition of con-

tinuity of the first derivative at the interface.A1 andA2 correspond to the discrete operator
(I +1t D2) on each subdomain without the row acting on the interface points. The linear
system (13) can eventually be solved with two parallel processes. The domain decomposi-
tion with two subdomains that we have presented here can be generalized to an arbitrary
number of subdomains to solve multiple front structures [3, 1]. This domain decomposi-
tion is afirst level of decompositionthat is, a priori, a nonscalable parallelism because
of its dependence on the numbers of the layers. As the front moves we adapt the grid in
thez-direction in order to put the interface of the two subdomains at the sharp position of
the front. The location of the front is derived from asymptotic criteria and/or an a priori
estimate.

To move toward asecond level of decompositionthat uses a fine grid level of parallelism,
we shall now consider a two-dimensional case with some appropriate initial conditions, thus
generalizing our previous example (11):

∂u/∂t = ∂2u/∂x2+ ∂2u/∂z2− Fε(u), z ∈ (−1, 1), x ∈ (0, 2π),
u(x,−1) = 0, u(x, 1) = 1, x ∈ (0, 2π). (14)
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We look for a periodic solutionu(z, x) in thex variable. We now assume that the TL of the
problem (14) dependsweaklyon x. This hypothesis significantly simplifies the technique
of the domain decomposition method as we will see in the following. As the solutionu is
not rapidly varying in thex direction, we can use a regular mesh in thex-direction. Our first
choice is to use a central finite-difference scheme of order 6 forD2

x, the approximation of
∂2/∂x2, on a regular grid ofNx points with a steph= 2π/(Nx − 1). The finite difference
approximation of order 6 of the term∂2u/∂x2 is treatedexplicitly. The cost of the algorithm
is very low because the complexity of the computation is linear with respect toNx. In
addition, the time step constraint due to the explicit treatment of the second order derivative
is, in practice, of the same order as the time step restriction due to the explicit treatment of
the nonlinear source terms. The numerical algorithm can exploit the fine grid decomposition
due to the explicit dependence onx because the computation ofD2

xun is used with an explicit
formula which only includes local values of the functionun.

Let us now consider the steady state equation analogous to (14), i.e.,

∂2u

∂x2
+ ∂

2u

∂z2
= Fε(x, z), u(x,−1) = 0, u(x, 1) = 1, z∈ (−1, 1), x ∈ (0, 2π). (15)

We now need to use an implicit approach, with respect tobothspace variables. We look for
thex-periodic functionu(z, x) as a discrete Fourier expansion:

u(x, z) = 6k=−Nx/2,Nx/2−1 ûk(z) eikx. (16)

We compute the Fourier modeŝFk(z) of the Fε(z, x) function. Then the functionŝuk(z)
can be found from the system ofNx independentordinary differential equations:

∂2

∂z2
ûk(z)− k2ûk(z) = F̂k(z), k = −Nx

2
,

Nx

2
− 1. (17)

These equations are solved with the same one-dimensional domain decomposition method
in z-direction as described above (Eq. (13) withD̃=−k2I + D2). We then have a fine grid
level of parallelism with respect to the wave numberk. We have implemented these tech-
niques to solve the problem (1)–(4) with periodic boundary conditions. Using nonblocking
communications we obtained an efficiency of about 90% withnd= 2, Nx = 128, Nz= 59
on the paragon with 32 nodes. We refer to [6] for a detailed description of the results. Our
second choice is to use a similar parallel scheme to compute the time dependent problem
(14) as well; but we observe that the complexity of the algorithm with respect toNx becomes
quadratic when using a matrix product approach. In addition the algorithm requires a global
transposition of the data that might affect the efficiency of the parallel algorithm.

3. DECOMPOSITION IN FUNCTION SPACE FOR THE NONPERIODIC

BOUNDARY CONDITIONS

The next step to obtain a more realistic model, is to include the nonperiodic boundary
conditions (BC), because the walls of the test tubes may significantly influence the dynamics
of the combustion front [16]. We consider homogeneous Neuman boundary conditions for
the concentration and possible heat transfer for the temperature at the walls. Eqs. (1) to
(2) can be solved with the same method as above, except that the finite differences with
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respect tox must be modified to implement the new boundary conditions. However, our
solution of the stream function equation uses the Fourier expansion in thex-direction and
this cannot be applied to the case of the nonperiodic boundary conditions. It is quite possible
to substitute into the Fourier approximation a Chebyshev approximation of9 andω in the
x-direction as well, but this will result in a large change of the data structure of the code and
will give rise to difficulties in terms of parallelism efficiency. Our objective is to build an
efficient parallel numerical scheme that works with periodic, as well as nonperiodic (BC)
problemswith the same data structure. To achieve this goal we develop a technique, that
is an extension of the work of Israeliet al. [13]. Let us consider the unsteady incompressible
Navier–Stokes equation, on the domainÄ= ]0, 2π [× ]−L ,+L[, written in stream function
formulation with a no-slip boundary condition along the vertical wallsx= 0, z ∈ (−L , L),
andx= 2π, z∈ (−L , L):

∂19/∂t = (∂9/∂x)(∂19/∂z)− (∂9/∂z)(∂19/∂x)
+119 − f (x, z, t), (x, z)∈Ä,

9(0, z) = 0, (∂9/∂x)(0, z) = 0, z∈ (−L , L),

9(2π, z) = 0, (∂9/∂x)(2π, z) = 0, z∈ (−L , L).

(18)

We are going to use a special feature of our model problem (1)–(4) on the infinite strip
(0, 2π)× (−∞,∞); the gradient of the temperature vanishes exponentially far from the
combustion front for largez. Thereforef (x, z, t)= RP(∂T/∂x) is vanishing exponentially
and consequently9 and its derivatives are vanishing exponentially for largez, too. We can
look at9 as a smooth periodic function in thez-direction of period 2L. Therefore, a Fourier
expansion of9 in thez-direction does not exhibit a Gibbs phenomena. We will in practice
take L large enough in our numerical simulation such that it has no influence on the computed
combustion front.

Let us consider the following semi-implicit Euler scheme for iterating in time:

19n+1− dt119n+1 = dt((∂9n/∂x)(∂19n/∂z)− (∂9n/∂z)(∂19n/∂x)
+19n − dt f (x, z, tn), (x, z)∈Ä,

9n+1(0, z) = 0, (∂9n+1/∂x)(0, z) = 0, z∈ (−L , L),

9n+1(2π, z) = 0, (∂9n+1/∂x)(2π, z) = 0, z∈ (−L , L).

(19)

We use a spectral method in Fourier space in thez-direction; f and9 at time tn are ap-
proximated by the following discrete Fourier expansion:

f (x, z, tn) = 6k=−Nx/2,Nx/2−1 f̂
n
k(x) eiky, (20)

9n(x, z, tn) = 6k=−Nx/2,Nx/2−19̂
n
k (x) eiky, (21)

y = (z+ L)π

L
. (22)

Let us denote byFn(x, z) the right-hand side of Eq. (19). From the approximation

(∂9n/∂x)(∂19n/∂y)− (∂9n/∂y)(∂19n∂x)

≈ i6k=−Nx/2,Nx/2−1
[
eiky6k1+k2=k

(
9̂n′

k1
k2
(
9̂n′′

k2
− k2

29̂
n
k2

)− 9̂n
k1

k1
(
9̂n′′′

k2
− k2

29̂
n′
k2

))]
, (23)
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we obtain the discrete Fourier expansion ofFn. We have then to solve at each time step the
uncoupled fourth-orderNx ODE’s:

• for k = 0: (
9̂n+1

0

)′′ − dt
(
9̂n+1

0

)′′′′ = F̂
n
0, x ∈ (0, 2π), (24)

9̂n+1
0 (0) = (9̂n+1

0

)′
(0) = 9̂n+1

0 (2π) = (9̂n+1
0

)′
(2π) = 0. (25)

• for k 6= 0:(
9̂n+1

k

)′′ − k29̂n+1
k − dt

((
9̂n+1

k

)′′′′ − 2k2
(
9̂n+1

k

)′′ + k49̂n+1
k

) = F̂
n
k, x ∈ (0, 2π), (26)

9̂n+1
k (0) = (9̂n+1

k

)′
(0) = 9̂n+1

k (2π) = (9̂n+1
k

)′
(2π) = 0. (27)

Let us formally denote these fourth-orderlinear ODE equations

Lk
[
9̂n+1

k

] = F̂
n
k , x ∈ (0, 2π). (28)

The main idea is toalsocompute9̂n+1
k with Fourier expansion. We will omit the subscript

k andn+ 1 to simplify the notations in what follows. Using the superposition principle, the
solution9̂ is written

9̂ = 9̂F + 9̂C, (29)

where9̂F and9̂C are defined in the next sections.

3.1. The Particular Solution9̂F with Fourier

Let d> 0, d∈R, and let [0, 2π + d] be an extension of the domain(0, 2π). Then if F̂
is in Cn(0, 2π) there existsF̄ in Cn(0, 2π + d) that is anx-periodic extension of̂F . We
constructF̄ as follows. We consider the exact or computed values of the derivatives ofF̂
until ordernth atx= 0 andx= 2π . The classical Hermite interpolation allows us to define
a polynomial functionPF̂ on [2π, 2π + d] of degree 2n+ 1 that interpolates the function
F̂ with the conditions:

P(0)
F̂
(2π) = F̂

(0)
(2π), P(1)

F̂
(2π) = F̂

(1)
(2π), . . . , P(n)

F̂
(2π) = F̂

(n)
(2π),

P(0)
F̂
(2π + d) = F̂

(0)
(0), P(1)

F̂
(2π + d) = F̂

(1)
(0), . . . , P(n)

F̂
(2π + d) = F̂

(n)
(0).

(30)

Then thex-periodic functionF̄ of period 2π + d is given as

F̄(x) =
{

F̂(x) ∀x ∈ [0, 2π ],

PF̂ (x) ∀x ∈ [2π, 2π + d].
(31)

We then define9F as the solution of the problem:

Lk[9̂F ] = F̄, x ∈ (0, 2π + d),

9̂F 2π + d periodic

9̂F ∈Cn+4(R).

(32)



            

NEW PARALLEL SOLVER APPLICATION 323

3.2. Corrector Term:9̂C

We observe that (28) is a singular perturbation problems withdt=O(1) as a singular
perturbation parameter, and̂9F is a regular expansion of the solution [2]. The next step
consists in searching for a corrector9̂C so that9̂ may satisfy Eq. (28) on the domainÄ
with the correct boundary conditions, i.e.,

Lk[9̂C] = 0, x ∈ (0, 2π),
9̂C(0) = −9̂F (0), (9̂C)

′(0) = −(9̂F )
′(0)

9̂C(2π) = −9̂F (2π), (9̂C)
′(2π) = −(9̂F )

′(2π).

(33)

Since the operators,Lk are fourth-order linear operators with constant coefficients, one
can once and for all compute the basis for the fourth-dimensional vector space of the
solutions; so we have

• for k= 0:

9̂0
C = α0 e−(x/

√
dt) + β0 e−((2π−x)/

√
dt) + γ0x + δ0(2π − x); (34)

• for k 6= 0:

9̂k
C = αk e−|k|x + βk e−|k| (2π−x) + γk e−(

√
k2+(1/dt)x) + δk e−(

√
k2+(1/dt)(2π−x)). (35)

The derivatives of̂9k
C can be computed readily from the previous formulae. The derivatives

of 9̂k
F can be computed from its discrete Fourier expansion. We assemble the right-hand

side of Eq. (19) at each time step using the splitting (29) on the derivatives as well.

3.3. Results and Algorithm

Our technique differs essentially from the work of Israeliet al. [13], by the way we
extend the right-hand side (RHS) of our ODEs problems; they use a so-called bell function
that cuts off the RHS into zero outside(0, 2π). We find improved accuracy using Hermite
interpolation even if the derivatives of̂F are computed numerically via decentered finite
differences. In practice, we use Hermite interpolation up to second-order derivatives. In
addition the work of Israeliet al. is focused on the Helmholtz problem, but there are
several new difficulties to properly implement the method when a nonlinear time-dependent
problem is solved. We refer to [4] for a detailed study of this method applied to a large set
of classical problems.

We have tested the stability and accuracy of our numerical scheme to solve the biharmonic
problem onÄ= ]0, Lx[× ]−L ,+L[ as the steady limit of the problem:

∂19/∂t = 119 − f (x, z, t), (x, z) ∈ Ä,
9(0, z) = 0, (∂9/∂x)(0, z) = 0, z ∈ (−L , L),

9(Lx, z) = 0, (∂9/∂x)(Lx, z) = 0, z ∈ (−L , L).

(36)

We have determined the source termf in order to have an exact solution that satisfies the
equation, as well as the boundary conditions. The dimension of the domain isLx = π in the
x-direction and 2L = 2π in thez-direction. The numberNx/2 denotes the number of modes
in x-direction used on the extended domain. We have imposedC2 continuity conditions
to build the Hermite interpolation polynomial (i.e.,n= 2 in (30)). The numerical values
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TABLE I

Error in Maximum Norm between the Exact Solution

π−5(x−π)2x3 and the Computed Solution with Respect to the

Number of Modes Nx/2 and the Ratio between the Extended

Domain and the Original Domain

Solution:π−5(x − π)2x3

Nx
2

Lx+d
Lx
= 2 Lx+d

Lx
= 1.1429 Lx+d

Lx
= 1.0667

8 0.205213E−02 0.950714E−02 0.721939E+01
16 0.817644E−04 0.984945E−04 0.142515E−02
32 0.188141E−05 0.255054E−05 0.158448E−04
64 0.344994E−07 0.932849E−07 0.233131E−06

128 0.421207E−09 0.198517E−08 0.829286E−08

of the derivatives involved in the Hermite conditions (30) are computed with one-sided
second-order finite differences, based on grid points inside the physical domain. It is not
wise to use central finite differences because the Gibbs phenomenon might be amplified by
the interpolation process after each time step.

Tables I and II give the maximum norm of the error between the computed solution and
the exact solution with respect to the number of modesNx/2 for two test cases. In addition,
we test the influence of the ratio(Lx + d)/Lx between the sizeLx + d of the extended
domain and the sizeLx of the physical domain on the accuracy.

The exact solutions, defined on [0, Lx]× [−π, π ], are not periodic in thex-direction and
are chosen such that their maximum value is equal to 1. Table I corresponds to a gradually
varying polynomial test function, but in Table II we consider a more rapidly varying test
function. The time step is a matter of choice since we only test the steady limit, but it has
obviously some influence on the stability and accuracy of the scheme. This is discussed
below, and Tables I and II have been obtained with1t = 10−2.

We note that the speed of convergence of the method is at least of order 4 for Table II
results and of order 5 for Table I results. In fact when one considers only the results for

TABLE II

Error in Maximum Norm between the Exact Solution

π−5(x−π)2x3e8(sin(z)−1) and the Computed Solution with Re-

spect to the Number of ModesNx/2 and the Ratio between the

Extended Domain and the Original Domain

Solution:π−5(x − π)2x3e8(sin(z)−1)

Nx
2

Lx+d
Lx
= 2 Lx+d

Lx
= 1.1429 Lx+d

Lx
= 1.0667

8 0.112976E−01 0.868233E+00 0.123936E+01
16 0.672073E−03 0.210331E−01 0.804409E+00
32 0.326011E−04 0.757420E−03 0.566257E−02
64 0.168978E−05 0.437461E−04 0.176142E−04

128 0.947167E−07 0.229509E−05 0.632574E−06
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the larger values of Nx in Tables I and II the results seem to get closer to order 6. This
felicitous convergence is in agreement with the fact that for each modek the right-hand side
of the fourth-order equation satisfied by9k

F is extended as aC2(0, 2π + d) function:9k
F

is, therefore, inC6(0, 2π + d). However, since the extension of the right-hand side is built
numerically, it is not obvious at all. In addition, we observe that the size of the extended
domain has less and less influence on the accuracy of the solution when the number of
Fourier modes is large enough. This observation is in agreement with the 1D theory of the
method [4].

We must emphasize that the discrete Fourier expansion of the corrector

9n
C(x, z)=6k=−Nx/2,Nx/2−19̂

n
C,k(x) eiky, y= (z+ L)π

L

exhibits at leading order, more precisely fork∈ (−1/
√

dt, 1/
√

dt), a boundary layer of
O(
√

dt) thickness. We have observed some spurious oscillations related to the Gibbs phe-
nomenon, when the time step is so small that the physical space step does not allow a good
representation of the layer. For the gradually varying test function of Table I, for example,
1t = 5× 10−4 seems to be the smallest time step that allows numerical convergence with
32 Fourier modes. A smaller time step leads to blowup. The obvious thing to do to overcome
this difficulty should be to use optimal filters, but this was not required for our numerical
simulation in the combustion described below.

The parallel implementation of our new solver consists in distributing the mode equations
between the processors. So each processor has to solve a set of equations for several modes
and then gathers the modes to build that part of the solution belonging to its computational
domain. The algorithm corresponding to our new parallel solver for the Navier–Stokes
equations can be summarized for each time step as follows:

• Step 1. ComputêF
n
k .

• Step 2. ExtendF̂
n
k .

• Step 3. Compute the explicit formula forαk, βk, γk, δk.
• Step 4. Computê9F,k via a matrix product approach.
• Step 5. Add the corrector̂9C,k to the periodic solution where it is not negligible.

We observe that the efficiency of the parallel implementation depends crucially on the first
step because of the coupling of the different modes. Since Step 1 is a piece of the computation
of Eqs. (1), (2), and (18), independent ofC, communications can be conveniently overlapped
by computation. On the contrary, Steps 2 to 5 of the algorithm are fully parallel.

We have been able to obtain good efficiency (90%) from this method on a four-processor
alpha server, just by unrolling the loop on the modes. Experiments with MPI and larger
numbers of processors are currently in progress. However, it is not critical for our applica-
tions because a Dec alpha server with four 400-Mhz processors is at least 50% as fast as a
32-node paragon [7].

We note that in order to calculate the right-hand sidef (x, z, t) of Eq. (19) on the grid
(x-uniform,z-Chebyshev), the term∂T/∂x must be interpolated in thez-direction from the
(x-uniform,z-Chebyshev) grid to the (x-uniform,z-uniform) grid. The computed9 solution
must be interpolated back. Each of these distributed interpolations are performed with
collocating the unknown function on the spectral grid points and evaluating its polynomial
representation on the other grid points. The time spent in each of these two interpolations
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is respectively 3% and 3.6% of the total time per iteration on four processors for the frontal
polymerisation problem described below.

Remark. The matrix multiply approach for the number of Fourier modes that we con-
sider is very effective on our Dec alpha computer; however, one should consider parallel
FFT solvers for larger problems.

4. A RESULT ON FRONTAL POLYMERISATION

A systematic investigation of the nonperiodic boundary condition effects on convective
and thermal instabilities of the combustion model under consideration is beyond the scope
of this paper, so we have selected here a numerical simulation that illustrates the numerical
effectiveness of our method.

Specifically, we show the effect of convection on the thermal instability that can also exist
without convection, that is whenR= 0. This computation was done in the following way:

We start with the values of parameters, where the thermal instability occurs, Zeldovich
numberZ= 7.8 and a domain of a width 4π . The time-periodic pattern of the combustion
front can be described briefly as follows: the solution stays symmetrical in space around
the medium linex= 2π at all time; a hot spot attached to the front and located on the axis
of symmetry of the solution, successively splits into two hot spots that propagate rapidly
against the walls and then form again when the two hot spots come back simultaneously
from the walls and merge. This type of instability is well known in solid combustion; it was
observed in SHS experiments and analyzed with asymptotic methods [21, 20, 19].

Starting from this initial solution, we introduce the effect of convection in this numeri-
cal simulation by gradually increasing the Rayleigh number from R= 0; positive Rayleigh
numbers correspond to ascending fronts. The exothermic reaction front heats the fresh
reactant from below and we can expect the appearance of convection rolls. For this compu-
tation, we usend= 2 subdomains with 59 Chebyshev collocation points in thez-direction,
80 modes in thex-direction, an extension domain ratio of 1.2850 for the stream-function
solution and 128 finite differences points inx-direction for the other unknowns.

Figure 1 represents thex-location of the hot spot with respect to time for the FP with and
without hydrodynamics (respectivelyR= 5 andR= 0). Because the solution is symmetric
with respect tox=π , we can omit the representation of the solution forR= 0 (respectively
R= 5) in the lower half (respectively the upper half) of the domain of computation.

The period in time of the FP process withR= 5 (resp.R= 0) is measured to be 3.99
(resp. 3.66) time units; the maximum value for all times of the hot spot is 1.285 (resp.
1.1635). The convective effects have slowed down the FP process.

The mechanism of propagation of the hot spot deals with the interaction of reaction and
diffusion processes. When the hot spot on the central line decreases and the two hot spots
along the wall increase there is a specific time when the location of the maximum value of
the temperature jumps from the central line to the location near the walls; it corresponds to
a vertical line in Fig. 1.

In order to measure the different phases in the FP process and analyze the effect of
convection we can define the following events:

• A: the hot spot leaves the center of the domain
• B: the hot spot reaches the walls
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FIG. 1. Comparison of the motion of the hot spot along thex-direction in time with hydrodynamics
(“ .-., ” R= 5, lower half part of the domain) and without hydrodynamics (“-, ” R= 0, upper half part of the
domain).

• C: the hot spot reaches its maximum value in time during the time period when it stays
close to the wall
• D: the hot spot leaves the walls
• E: the hot spot reaches the center of the domain
• F: the hot spot reaches its maximum value in time for all time.

It clearly appears that the convection:

1. slows down the FP propagation
2. breaks the symmetry of the time period since the hot spot stays longer along the central

line than along the wall. This is not the case whenR= 0.
3. increases the maximum value of the hot spot.
4. slows down the diffusion of the hot spot strongly in the direction from the center to

the wall and weakly in the direction from the wall to the center.
5. speeds up the motion of the two hot spots in the direction from the wall to the center

and from the center to the wall.

This can be understood somehow by looking at the interaction between the spatial struc-
ture of the temperature field and the corresponding hydrodynamic structures whenR= 5
—see Figs. 2 and 3. The dashed lines represent the stream-function isovalues, while the
solid lines represent the temperature isovalues. We superpose the two fields on the same
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FIG. 2. Evolution with time of the isovalues of the temperature (solid line) and the isolvalues of the stream
function (dash line). Reference to the time event of Fig. 1 is given in the bottom right hand corner.

pictures in order to better show the coupling between the convection and gradient of
temperatures (Boussinesq approximation (3)). The symmetry of the stream function is
satisfied to the fourth digit.

During the phase E–F, the flow structure, generated by the hot spot, transports some
heat to the fresh reactant. This preheat increases the combustion process, leading to a rise
in the value of the hot spot at the center of the combustion front (T = 18.36, 18.44, and
18.56). When this hot spot (T = 18.56) reaches the maximum value (1.285), it diffuses in
thex-direction (T = 19.0, 19.6, and 16.2, phase F–A) and creates new flow structures with
an opposite spin as the previous ones. Then the two oldest flow structures die, due to the
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FIG. 3. Evolution (continued) with time of the isovalues of the temperature (solid line) and the isolvalues of
the stream function (dash line). Reference to the time event of Fig. 1 is given in the bottom right hand corner.

opposite spin of the vortices attached to the hot spots. In the sequel, the hot spot splits into
two hot spots which join the walls (T = 16.4 andT = 16.56, phases A–B).

A new flow structure is then established (T = 16.56 andT = 16.72, phase B–C). The
fluid motion transports some heat to the fresh reactant located at the center of the domain
that contributes to increase the hot spot values. The hot spots attached to the front propagate
along the wall. When the hot spots reach a maximum value of 1.21 (T ' 16.72, phase C–D),
they diffuse toward the center of the front (T = 17.0, 17.52, 18.28, phase D–E) and merge
(T = 18.36), creating two new vortices with an opposite spin to the previously established
flow structure of phase B–C.
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TABLE III

Elapsed Time between the Events A and B, B and C, etc.

of the FP with and without Hydrodynamics

Time A-B B-C C-D D-E E-F F-A Period

R= 0 0.04 0.34 1.45 0.04 0.34 1.45 3.66
R= 5 0.16 0.18 1.54 0.08 0.18 1.85 3.99

Note. Rayleigh number R= 5 and R= 0, respectively.

5. CONCLUSION

We have presented a new algorithm that allows us to generalize our previous results in
the modelization of frontal polymerization with the classical simplification of periodicity
to nonperiodic boundary conditions.

Our technique relies on combining complementary levels of decomposition according
to the asymptotic properties of the combustion model and the specific structure of the
traveling waves under consideration. These techniques are developed to make an efficient
use of MIMD architecture using among other concepts, a parallelism based on the Fourier
modes decomposition.

We have numerically shown for some test functions that this technique can be of order
4 at least and that the length of the domain extension has little influence on the solution
accuracy for large numbers of modes.

We have given a nontrivial illustration of this method with a numerical simulation that
couples convection motion of the fluid and the well-known thermal instability of a combus-
tion front.

We are currently investigating the possibilities of generalizing of this embedding tech-
nique to solve free boundary problems that occur in liquid–solid frontal polymerisation [9].
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